

Z20⁺名校联盟(浙江省名校新高考研究联盟)2026 届高三第一次联考

数学参考答案

、单项选择题: (本题共 8 小题,每小题 5 分,共 40 分.)

1	2	3	4	5	6	7	8
A	D	В	D	A	D	C	D

1. A

设z=a+bi,则 $2z+\overline{z}=3a+bi=3-i$,故b=-1,即z的虚部为-1.

由于焦点为(0,1), 故 k > 4 且 $1 = c^2 = k - 4$, 解得: k = 5.

3. B

因为 $\vec{a}//\vec{b}$, 故 2(x-1)=x-5, 解得: x=-3.

由题意: $N \subseteq \{1,2,3,4,16\}$ 且 $\{4,16\} \subseteq N$,满足条件的 N的个数即为 $\{1,2,3\}$ 的子集个数,因此满足 条件的N的个数等于8.

5. A

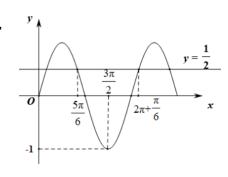
作出 $y = \sin x$ 的一个简图,如图,由于函数的值域为 $\left| -1, \frac{1}{2} \right|$,

$$\sin \frac{5\pi}{6} = \frac{1}{2}$$
, $\sin \frac{3\pi}{2} = -1$, $\sin(2\pi + \frac{\pi}{6}) = \sin \frac{13\pi}{6} = \frac{1}{2}$,

$$\text{If } \diamondsuit t = 2x - \frac{\pi}{6} \; , \; \text{If } t \in \left[\frac{5\pi}{6}, 2a - \frac{\pi}{6} \right],$$

则有
$$\frac{3\pi}{2} \le 2a - \frac{\pi}{6} \le \frac{13\pi}{6}$$
,解得: $\frac{5\pi}{6} \le a \le \frac{7\pi}{6}$,

即 a 的取值范围是 $\left[\frac{5\pi}{6}, \frac{7\pi}{6}\right]$.



6. D

考虑曲面区域 ABFE ,由于 AE 所对的圆心角为 $\frac{\pi}{3}$,故曲面区域 ABFE 的面积为一个底面半径为 5m , 高为 20m 圆柱的侧面积的 $\frac{1}{6}$, 即 $S_{ABFE} = \frac{1}{6}S_{(0)} = \frac{1}{6} \cdot 2\pi r \cdot h = \frac{100\pi}{3} m^2$,

因此 $S_{\stackrel{.}{\boxtimes}} = 2S_{ABFE} = \frac{200}{3} m^2$.

7. C

考虑 X,Y 的概率密度函数 f(x) 和 g(x) ,因为 $X \sim N(1,4)$, $Y \sim N(2,4)$,所以 f(x) 和 g(x) 图象分 别关于x=1和x=2对称,且f(x)和g(x)图像形状完全相同,

故 f(x) 和 g(x) 图象关于 $x = \frac{3}{2}$ 对称;由于 $P(X \le a) = P(Y \ge b)$,因此由图像可知,直线 x = a 与直

线 x = b 关于 $x = \frac{3}{2}$ 对称,即 a + b = 3,

则
$$\frac{1}{a} + \frac{4}{b} = \frac{1}{3}(a+b)\left(\frac{1}{a} + \frac{4}{b}\right) = \frac{1}{3}\left(5 + \frac{b}{a} + \frac{4a}{b}\right) \ge \frac{1}{3}\left(5 + 2\sqrt{\frac{b}{a} \cdot \frac{4a}{b}}\right) = 3$$
, 当且仅当 $a = 1, b = 2$ 时等号成立.

8. D

曲题意:
$$3f(x-1)-3f(x-2) \ge f(x)-f(x-1) \ge 2f(x-1)-2f(x-2)$$
, 设 $a_n = f(n)-f(n-1)$, $n \ge 2$, 则 $3a_{n-1} \ge a_n \ge 2a_{n-1}$, $a_2 = f(2)-f(1)=1$, 所以 $a_n \ge 2a_{n-1} \ge 4a_{n-2} \ge \cdots \ge 2^{n-2}a_2 = 2^{n-2}$, $a_n \le 3a_{n-1} \le 9a_{n-2} \le \cdots \le 3^{n-2}a_2 = 3^{n-2}$, 即 $3^{n-2} \ge f(n)-f(n-1) \ge 2^{n-2}$.

累加得到:
$$f(n)-f(1) \ge 2^{n-2}+2^{n-1}+\cdots+2^0=2^{n-1}-1$$
, 即 $f(n) \ge 2^{n-1}$,

同理累加得:
$$f(n)-f(1) \le 3^{n-2}+3^{n-1}+\cdots+3^0=\frac{3^{n-1}-1}{2}$$
, 即 $f(n) \le \frac{3^{n-1}+1}{2}$,

因此 $16 \le f(5) \le 41$, $f(10) \ge 2^9 = 512 > 500$, 只有 D 项符合题意.

二**、多选题:** (本题共 3 小题,每小题 6 分,共 18 分.)

9	10	11	
BC	ABD	BCD	

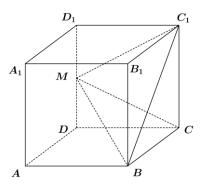
9. BC

A 项:由于 $A_1B_1//C_1D_1$,且 C_1D_1 与平面 BC_1M 相交,故 A_1B_1 与平面 BC_1M 不平行,A 项错误;B 项:由于 $BC_1//AD_1$,且 ΔAD_1B_1 为正三角形,故 B_1D_1 与 AD_1 所成夹角为 60° ,即 B_1D_1 与 BC_1 所成夹角为 60° ,B 项正确;

C 项: 由于 $BC_1 \perp B_1C$, 故 $BC_1 \perp A_1D$, 因为 $A_1B_1 \perp$ 面 BB_1C_1C , 所以 $A_1B_1 \perp BC_1$ 因为 $A_1D \cap A_1B_1 = A_1$, 所以 $BC_1 \perp$ 面 A_1B_1D , 所以平面 $A_1B_1D \perp$ 平面 BC_1M , C 项正确;

D 项:
$$V_{C-BC_1M} = \frac{1}{3} S_{\Delta CMC_1} \cdot CB = \frac{1}{6}$$
, D 项错误.

综上,选BC.



10. ABD

A 项: 在 Δ*ABC* 中,由正弦定理: $\frac{AC}{\sin B} = \frac{AB}{\sin C}$,代入得: $\sin B = \frac{3}{2} \sin C$, A 项正确;

B 项: 由
$$B = C + \frac{\pi}{2}$$
, 可知: $\frac{3}{2} \sin C = \sin \left(C + \frac{\pi}{2} \right) = \cos C$, 则 $\tan C = \frac{2}{3}$, B 项正确;

C 项: 由前知:
$$\sin C = \frac{2}{\sqrt{13}}$$
, $\cos C = \frac{3}{\sqrt{13}}$,

因为
$$A = \pi - B - C = \frac{\pi}{2} - 2C$$
,所以 $\sin A = \sin\left(\frac{\pi}{2} - 2C\right) = \cos 2C = 1 - 2\sin^2 C = \frac{5}{13}$,

则由正弦定理: $BC = \frac{AB}{\sin C} \cdot \sin A = \frac{5}{\sqrt{13}}$, C 项错误;

D 项: 因为
$$\cos A = \frac{12}{13}$$
, 所以 $\sin \frac{A}{2} = \sqrt{\frac{1-\cos A}{2}} = \frac{1}{\sqrt{26}}$,

则
$$S_{\Delta ABC} = \frac{1}{2} \cdot AD \cdot (AB + AC) \times \sin \frac{A}{2} = \frac{1}{2} \cdot AD \cdot \frac{5}{\sqrt{26}} = \frac{15}{13}$$
, 解得: $AD = \frac{6\sqrt{26}}{13}$, D 项正确.

综上,选 ABD.

11. BCD

A 项: 设球在甲乙丙丁手中的概率分别为 q_1,q_2,q_3,q_4 , 当n=1时, $q_1=0,q_2=q_3=q_4=\frac{1}{3}$;

当 n = 2 时, $q_1 = \frac{1}{3} \times \frac{1}{3} + 2 \times \frac{1}{3} \times \frac{1}{6} = \frac{2}{9}$, $q_2 = 0 + 2 \times \frac{1}{3} \times \frac{1}{6} = \frac{1}{9}$, $q_3 = q_4 = \frac{1}{2} (1 - q_1 - q_2) = \frac{1}{3}$,此时 $q_1 \neq q_2$,即球在甲乙手中概率不相等,A 项错误;

B 项: 当
$$n=3$$
时, $q_1=\frac{1}{9}\times\frac{1}{3}+2\times\frac{1}{3}\times\frac{1}{6}=\frac{4}{27}$, $q_2=\frac{2}{9}\times\frac{1}{3}+2\times\frac{1}{3}\times\frac{1}{6}=\frac{5}{27}$, B 项正确;

C 项: 由题意,球在A队手中时,下一次传球后,球有 $\frac{1}{3}$ 的概率仍在A队手中,球在B队手中时,下一次传球后,球有 $\frac{1}{3}$ 的概率传到A队手中,设传球n次后,球在A队成员手中的概率为 r_n ,

在 B 队成员手中的概率为 $1-r_n$ 。则由全概率公式可知 $r_n=\frac{1}{3}r_{n-1}+\frac{1}{3}(1-r_{n-1})=\frac{1}{3}$,为定值,C 项正确;

D 项: 传球n次后,球在乙手中的概率为 p_n ,由前知,球在甲手中的概率为 $\frac{1}{3}$ - p_n ,球在B 队手中的概率始终为 $\frac{2}{3}$; 由题意,球在B 队手中时,下一次传球后,球有 $\frac{1}{6}$ 的概率传到乙手中。

由全概率公式可知: $p_n = 0 \times p_{n-1} + \frac{1}{3} \times \left(\frac{1}{3} - p_{n-1}\right) + \frac{2}{3} \times \frac{1}{6} = \frac{2}{9} - \frac{1}{3} p_{n-1}$, 即 $p_n - \frac{1}{6} = -\frac{1}{3} \left(p_{n-1} - \frac{1}{6}\right)$,

由前得, $p_1 = \frac{1}{3}$,则 $\left\{ p_n - \frac{1}{6} \right\}$ 是以 $\frac{1}{6}$ 为首项, $-\frac{1}{3}$ 为公比的等比数列,解得:

$$p_n = \frac{1}{6} \left(1 + \left(-\frac{1}{3} \right)^{n-1} \right) (n \ge 2)$$
, D 项正确.

综上,选 BCD.

三、填空题: (本题共 3 小题,每小题 5 分,共 15 分.)

12. 1 13. 21 14.
$$\frac{\sqrt{17}}{3}$$

12. 1 由题意: $a = \log_2 3$, $b = \log_3 2$, 则 $ab = \log_2 3 \cdot \log_3 2 = 1$.

13. 21

由题意,总共能构成的5位数的个数为 $A_4^4 = 24$,

考虑重复的情况,此时1与2相邻,且1排在2前,这样的5位数相当于将12,12,3三个数进行排列得到,共有 $C_3^l=3$ 个,

因此共能组成不同的5位数的个数为24-3=21个.

14.
$$\frac{\sqrt{17}}{3}$$

由题意,
$$S_{\Delta QF_1F_2}: S_{\Delta PF_1F_2} = QF_2: PF_2 = 2:1$$
,

故可设
$$PF_2 = x$$
,则 $QF_2 = 2x$,

所以
$$PF_1 = x + 2$$
 , $QF_1 = 2x + 2$, $PQ = 3x$,

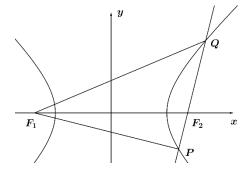
因为 $\Delta F_1 PQ$ 为直角三角形,

所以
$$PF_1^2 + PQ^2 = F_1Q^2$$
, 即 $(2x+2)^2 = (3x)^2 + (x+2)^2$,

解得:
$$x = \frac{2}{3}$$
,

$$\text{III } F_1 F_2 = \sqrt{\left(\frac{2}{3}\right)^2 + \left(\frac{8}{3}\right)^2} = \frac{2\sqrt{17}}{3} ,$$

则
$$e = \frac{\sqrt{17}}{3}$$
.



四、解答题: (本题共 5 小题, 共 77 分.)

15. 答案:

(1):每组小矩形的面积之和为1,

$$\therefore (0.005 + 0.010 + 0.020 + a + 0.025 + 0.010) \times 10 = 1,$$

∴
$$a = 0.030$$
. (2 $\%$)

成绩落在[40,70)内的频率为 $(0.005+0.010+0.020)\times10=0.35<0.5$,

成绩落在[40,80)内的频率为 $(0.005+0.010+0.020+0.030)\times10=0.65>0.5$,

设中位数为m,则 $0.35+(m-70)\times0.030=0.5$,

解得m=75,

即中位数为75. (6分)

(2) 由分层抽样可知,成绩在[80,90]的人数为 $7 \times \frac{0.025}{0.025 + 0.01} = 5$ 人,成绩在[90,100]的人数为2人,(8分)

故 X 的可能取值为 0,1,2,

$$\underline{\mathbf{H}} P(X=0) = \frac{C_2^0 C_5^3}{C_7^3} = \frac{2}{7}, \quad P(X=1) = \frac{C_2^1 C_5^2}{C_7^3} = \frac{4}{7}, \quad P(X=2) = \frac{C_2^2 C_5^1}{C_7^3} = \frac{1}{7} \quad (11 \text{ }\%)$$

X	0	1	2	
P	$\frac{2}{7}$	$\frac{4}{7}$	$\frac{1}{7}$	

故
$$E(X) = 0 \cdot \frac{2}{7} + 1 \cdot \frac{4}{7} + 2 \cdot \frac{1}{7} = \frac{6}{7}$$
. (13 分)

16. 答案:

(1) 作 $PO \perp AB \mp O$, 连接DO,

因为面 $PAB \perp$ 面 ABCD , AB 为面 PAB 和面 ABCD 的交线,所以 $PO \perp$ 面 ABCD . (2分) 由题意, ABCD 为直角梯形,所以易求得 $S_{ABCD} = 2\sqrt{3} + 1$.

因为
$$V_{P-ABCD} = \frac{2\sqrt{3}+1}{3} = \frac{1}{3} \cdot PO \cdot S_{ABCD}$$
,解得: $PO = 1$, (4分)

由
$$PB = 2$$
, 可知 $BO = \sqrt{PB^2 - PO^2} = \sqrt{3} = CD$,

因为 BO//CD,所以四边形 BODC 为平行四边形, BC//DO,即 $DO \perp AB$,(5分)由于 $PO \perp AB$, $DO \perp AB$, $PO \cap DO = O$,所以 $AB \perp$ 面 POD . (6分)

因为PD \subset 面POD, 所以 $AB \perp PD$. (7分)

(2) 设平面 PAB 与平面 PDC 所成角为 θ ,

法一:如图,以0为原点建立空间直角坐标系,

由 (1) 可知:
$$P(0,0,1)$$
, $D(2,0,0)$, $C(2,\sqrt{3},0)$, (9分)

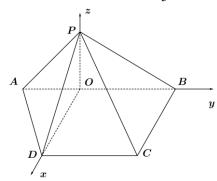
易知,
$$\vec{n_1} = (1,0,0)$$
是面 *PAB* 的法向量, (10 分)

设 $\overrightarrow{n_2} = (x, y, z)$ 是面 PDC 的法向量,

则
$$\begin{cases} \overrightarrow{n_2} \cdot \overrightarrow{BC} = 0 \\ \overrightarrow{n_2} \cdot \overrightarrow{PD} = 0 \end{cases} \Rightarrow \begin{cases} 2y = 0 \\ 2x - z = 0 \end{cases}, \quad \mathbb{R} x = 1, \quad \text{得到} \overrightarrow{n_2} = (1,0,2), \quad (12 \text{ } \%)$$

$$\operatorname{III} \cos \theta = \frac{\left| \overrightarrow{n_1} \cdot \overrightarrow{n_2} \right|}{\left| \overrightarrow{n_1} \right| \left| \overrightarrow{n_2} \right|} = \frac{1}{\sqrt{5} \cdot 1} = \frac{\sqrt{5}}{5}, \quad (14 \%)$$

所以平面 PAB 与平面 PDC 所成角 θ 的正弦值为 $\frac{2\sqrt{5}}{5}$. (15 分)



法二: 过P作直线l//CD,则 $l \subset m$ PCD. (8分)

因为AB//CD//l, 所以 $l \subset \text{m} PAB$,

故l是面PCD和面PAB的交线. (10分)

因为 $PD \perp AB$,即 $PD \perp l$; $PO \perp AB$,即 $PO \perp l$,

所以 $\angle DPO$ 即为所求夹角 θ . (12分)

因为 $\angle POD = 90^{\circ}$, PO = 1, DO = BC = 2,

所以
$$\sin \theta = \sin \angle DPO = \frac{OD}{PD} = \frac{2\sqrt{5}}{5}$$
. (15 分)

17. 答案:

(1)
$$n \ge 2$$
 时, $a_n = S_n - S_{n-1} = \frac{1}{n} - \frac{1}{n+1} (n \ge 2)$, 化简得: $a_n = \frac{1}{n^2 + n} (n \ge 2)$, (2 分) 经检验得, $n = 1$ 时也满足, (3 分) 故 $a_n = \frac{1}{n^2 + n}$. (4 分) (注:答案对但未检验,扣 1 分)

(2) (i) 由题意:
$$\tan \beta_n = \frac{1}{n}$$
,

则 $\tan \beta_2 = \frac{1}{2}$, $\tan \beta_3 = \frac{1}{3}$, (6分)

所以 $\tan (\beta_2 + \beta_3) = \frac{\tan \beta_2 + \tan \beta_3}{1 - \tan \beta_2 \cdot \tan \beta_3} = \frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} \cdot \frac{1}{3}} = 1$, (8分)
即 $\tan (\beta_2 + \beta_3) = 1$. (9分)

(ii) 由题意可知:
$$A_n \left(n^2 + n + 1, 1 \right)$$
,

则 $\tan \alpha_n = \frac{1}{n^2 + n + 1}$, $\tan \beta_n = \frac{1}{n}$, (11 分)

先证明以下结论: $\alpha_n = \beta_n - \beta_{n+1}$.

因为 $\tan (\beta_n - \beta_{n+1}) = \frac{\frac{1}{n} - \frac{1}{n+1}}{1 + \frac{1}{n} \cdot \frac{1}{n+1}} = \frac{1}{n^2 + n + 1} = \tan \alpha_n$, (13 分)

且 $\beta_n - \beta_{n+1} \in \left(0, \frac{\pi}{4} \right)$, $\alpha_n \in \left(0, \frac{\pi}{4} \right)$,

所以 $\beta_n - \beta_{n+1} = \alpha_n$, (14 分)

故 $\alpha_1 + \alpha_2 + \dots + \alpha_n + \beta_{n+1} = (\beta_1 - \beta_2) + (\beta_2 - \beta_3) + \dots + (\beta_n - \beta_{n+1}) + \beta_{n+1} = \beta_1$. (15 分)
因为 $\tan \beta_1 = 1$, 则 $\beta_1 = \frac{\pi}{4}$, 原式得证.

18. 答案:

法一: 因为
$$\cos \angle AOB = \frac{\overline{OA} \cdot \overline{OB}}{|\overline{OA}| |\overline{OB}|} = \frac{x_1 x_2 + y_1 y_2}{\sqrt{x_1^2 + y_1^2} \cdot \sqrt{x_2^2 + y_2^2}} = \frac{-4}{\sqrt{x_1^2 + 4x_1} \cdot \sqrt{x_2^2 + 4x_2}} = \frac{-4}{\sqrt{x_1 x_2} \left[x_1 x_2 + 4(x_1 + x_2) + 16 \right]},$$
(8 分)

代入可知: $\cos \angle AOB = \frac{-1}{\sqrt{9 + 4m^2}} = -\frac{\sqrt{13}}{13}$, 解得: $m = \pm 1$,

即 $l: x = y + 2$ 或 $l: x = -y + 2$. (10 分)

法二: 因为 $\cos \angle AOB = -\frac{1}{|x_1|} = \left| \frac{1}{y_1} \right|$, $\tan \angle AOB = -2\sqrt{3}$.

因为 $\tan \angle AOX = \left| \frac{y_1}{|x_1|} \right| = \left| \frac{1}{y_1} \right|$, $\tan \angle BOX = \left| \frac{4}{y_2} \right|$,

所以 $\tan \angle AOB = \tan(\angle AOX + \angle BOX) = \frac{\tan \angle AOX + \tan \angle BOX}{1 - \tan \angle AOX + \tan \angle BOX} = \frac{\left| \frac{4}{y_1} \right| + \left| \frac{4}{y_2} \right|}{1 - \left| \frac{16}{y_1 y_2} \right|} = \frac{4|y_2 - y_1|}{|y_1 y_2| - 16} = \frac{|y_2 - y_1|}{2} = -2\sqrt{3}$, $\mathbb{P}|y_2 - y_1| = 4\sqrt{3}$. (8 分)

 $\frac{4|y_2 - y_1|}{|y_1 y_2| - 16} = \frac{|y_2 - y_1|}{2} = 4y_1 y_2$, $\frac{4}{9} 16m^2 - 48 = -32$, 解得: $m = \pm 1$, $m : x = y + 2$ 或 $l: x = -y + 2$. (10 分)

(ii) 法一: 由对称性, 不妨取 $l: x = y + 2$, $t: x =$

$$\iiint \frac{4ay_1}{y_1^2 + 16} - \frac{3ay_1^2}{2(y_1^2 + 16)} = \frac{a(8y_1 - 3y_1^2)}{2(y_1^2 + 16)} = \frac{-a(y_1^2 + 16)}{2(y_1^2 + 16)} = -\frac{a}{2},$$

即
$$EF: y = \frac{3}{2}x - \frac{a}{2}$$
, (15 分)

因为
$$k_{PG} = -1$$
,所以 $PG: y = -(x-a)$,联立解得: $G\left(\frac{a+2}{2}, \frac{a-2}{2}\right)$,

因为 E, F, G =点共线,所以 G 在直线 EF 上,代入得: $\frac{a-2}{2} = \frac{3}{2} \cdot \frac{a+2}{2} - \frac{a}{2}$,解得: a = 10,

故 P 的坐标为(10,0). (17 分)

法二: 由对称性,不妨取l:x=y+2,设A在第一象限,

联立方程:
$$\begin{cases} y^2 = 4x \\ y = x - 2 \end{cases}$$
, 解得: $y_1 = 2 + 2\sqrt{3}$, $y_2 = 2 - 2\sqrt{3}$,

则:
$$A(4+2\sqrt{3},2+2\sqrt{3})$$
, $B(4-2\sqrt{3},2-2\sqrt{3})$, (11 分)

故 $OA: y = (\sqrt{3} - 1)x$,

因为
$$PE \perp OA$$
 , 所以 $PE : y = -\frac{1}{\sqrt{3}-1}(x-a)$,

联立方程:
$$\begin{cases} y = (\sqrt{3} - 1)x \\ y = -\frac{1}{\sqrt{3} - 1}(x - a) \end{cases}, \quad 解得: \quad E\left(\frac{5 + 2\sqrt{3}}{13}a, \frac{1 + 3\sqrt{3}}{13}a\right), \tag{13 分)}$$

同理有:
$$F\left(\frac{5-2\sqrt{3}}{13}a, \frac{1-3\sqrt{3}}{13}a\right)$$
,

可知
$$k_{EF} = \frac{y_E - y_F}{x_F - x_F} = \frac{3}{2}$$
, (14分)

因为
$$k_{PG} = -1$$
,所以 $PG: y = -(x-a)$,联立解得: $G\left(\frac{a+2}{2}, \frac{a-2}{2}\right)$,

则:
$$k_{EG} = \frac{y_E - y_G}{x_E - x_G} = \frac{(6\sqrt{3} - 11)a + 26}{(4\sqrt{3} - 3)a - 26}$$
, (15分)

因为E,F,G三点共线,所以 $k_{EG}=k_{EF}$,代入解得: a=10,

故 P 的坐标为(10,0). (17 分)

19. 答案:

(1)
$$a = 0$$
 时, $g(x) = 2\ln(x+1) - 3x$, $g'(x) = \frac{2}{x+1} - 3$, (1分) 所以 $g'(1) = -2$,由于 $g(1) = 2\ln 2 - 3$, (2分) 所以 $g(x)$ 在 $(1,g(1))$ 处的切线 l 的方程为 $y = -2(x-1) + 2\ln 2 - 3$, 化简得: $l: y = -2x + 2\ln 2 - 1$. (4分)

$$\stackrel{\text{def}}{=} a = 1 \text{ iff}, \quad f'(x) = \ln(x+1) + \frac{x}{x+1} - 2 + \frac{2}{x+1} = \ln(x+1) - 1 + \frac{1}{x+1},$$

令 $F(x) = \ln(x+1) - 1 + \frac{1}{x+1}$,则 $F'(x) = \frac{1}{x+1} - \frac{1}{(x+1)^2} = \frac{x}{(x+1)^2}$,则 F(x) 在 $\left(-1,0\right)$ 上单调递减,

 $在(0,+\infty)$ 上单调递增,

则 $F(x) \ge F(0) = 0$,即 f(x) 在 $(-1,+\infty)$ 上单调递增,不合题意. (8分)

综上: x=0不是函数 f(x) 的极值点. (9分)

(3) 由题意: $x\ln(x+a)-2\ln(x+a+1)>-x-2\ln(x+1)+k(x-2)$,

上式对任意 $a \in [0,2]$ 恒成立,以 a 为主元,令 $h(a) = x \ln(x+a) - 2 \ln(x+a+1)$,则只需 $h(a)_{\min} > -x - 2 \ln(x+1) + k(x-2)$, (10 分)

因为 $h'(a) = \frac{x}{x+a} - \frac{2}{x+a+1} = \frac{x^2 - x + (x-2)a}{(x+a)(x+a+1)} > 0$,所以 h(a) 在 [0,2] 上单调递增,

 $\iiint h(a)_{\min} = h(0) = x \ln x - 2 \ln(x+1) , \quad \text{th} x \ln x - 2 \ln(x+1) > -x - 2 \ln(x+1) + k(x-2) ,$

即 $x \ln x + x > k(x-2)$ 对任意 $x \in (2,+\infty)$ 恒成立. (12 分)

法一: 设 $\varphi(x) = x \ln x + x - k(x-2) \left(x \in (2,+\infty) \right)$, $\varphi'(x) = \ln x + 2 - k$,

当 $k \le 2 + \ln 2$ 时, $\varphi'(x) > 0$ 恒成立,故 $\varphi(x)$ 在 $(2,+\infty)$ 上单调递增,

所以 $\varphi(x) > \varphi(2) = 2\ln 2 + 2 > 0$,成立, (13分)

当 $k > 2 + \ln 2$ 时, $\varphi(x)$ 在 $\left(2, e^{k-2}\right)$ 上单调递减, 在 $\left(e^{k-2}, +\infty\right)$ 上单调递增,

故只需 $\varphi(e^{k-2}) > 0$,即 $2k - e^{k-2} > 0$,

今 $H(k) = 2k - e^{k-2}$, $H'(k) = 2 - e^{k-2} < 2 - e^{\ln 2} = 0$, 所以 H(k) 在 $(2 + \ln 2, +\infty)$ 上单调递减.

由于 $e^2 < 8$, $e^3 > 10$, 故 $H(4) = 8 - e^2 > 0$, $H(5) = 10 - e^3 < 0$, (15分)

则自然数k最大可取到4.

综上: $k_{\text{max}} = 4$. (17分)

法二: 由题意得: $k < \frac{x \ln x + x}{x - 2}$,

令 $H(x) = x - 2 \ln x - 4$, $H'(x) = 1 - \frac{2}{x} > 0$, 故 H(x) 在 $(2, +\infty)$ 上单调递增,

由于 $e^2 < 8$, $e^3 > 10$, 故 $H(8) = 4 - 2 \ln 8 = 2(2 - \ln 8) < 0$, $H(10) = 6 - 2 \ln 10 = 2(3 - \ln 10) > 0$, 所以 $\exists x_0 \in (8,10)$, 使得 $\varphi(x)$ 在 $(2,x_0)$ 上单调递减,在 $(x_0,+\infty)$ 上单调递增,且 x_0 满足 $x_0 - 2 \ln x_0 - 4 = 0$, (14分)

故
$$k < \varphi(x_0) = \frac{x_0 \ln x_0 + x_0}{x_0 - 2} = \frac{\frac{x_0(x_0 - 4)}{2} + x_0}{\frac{2}{x_0 - 2}} = \frac{x_0}{2}$$
, (15 分)

而 $\frac{x_0}{2} \in (4,5)$, 因此自然数k最大可取到4. (17分)

法三: 由题意得: $k < \frac{x \ln x + x}{x - 2}$,

取 $x = e^2$,则 $k < \frac{e^2 \ln e^2 + e^2}{e^2 - 2} = 3 + \frac{6}{e^2 - 2}$,

由于 $5 < e^2 < 8$,所以 $3 + \frac{6}{e^2 - 2} \in (4,5)$,故 $k \le 4$,(13 分)

下面说明 k=4 时原不等式恒成立,代入原不等式,即证: $\ln x-3+\frac{8}{x}>0$ 对任意 $x\in (2,+\infty)$ 恒成立

设 $\varphi(x) = \ln x - 3 + \frac{8}{x}$, $\varphi'(x) = \frac{x - 8}{x^2}$,故 $\varphi(x)$ 在(2,8)上单调递减,在 $(8,+\infty)$ 上单调递增,

所以 $\varphi(x) > \varphi(8) = \ln 8 - 2 > 0$,即k = 4成立,(15分)

因此,自然数k最大可取到4. (17分)